

#### available at www.sciencedirect.com







# Childhood central nervous system tumours – incidence and survival in Europe (1978–1997): Report from Automated Childhood Cancer Information System project

Rafael Peris-Bonet<sup>a,\*</sup>, Carmen Martínez-García<sup>b</sup>, Brigitte Lacour<sup>c</sup>, Svetlana Petrovich<sup>d,e</sup>, Begoña Giner-Ripoll<sup>a</sup>, Aurora Navajas<sup>f</sup>, Eva Steliarova-Foucher<sup>g</sup>

<sup>a</sup>National Childhood Cancer Registry, Spain (RNTI-SEOP) and Instituto López Piñero (CSIC-Universitat de València), Faculty of Medicine, Aud. Blasco Ibáñez, 15, 46010-Valencia, Spain

# ARTICLEINFO

Keywords:
Childhood cancer
Central nervous system tumours
Incidence
Survival
Population-based cancer registries
Europe
Trends

#### ABSTRACT

This paper describes the incidence and survival of childhood central nervous system (CNS) tumours in Europe for the period 1978–1997. A total of 19,531 cases, aged 0–14 years, from the ACCIS database were analysed by five regions: the British Isles, East, North, South, and West. Overall age-standardised incidence rate (ASR) of CNS tumours in Europe (1988–1997) was 29.9 per million, with the highest rates in the North. Astrocytoma (ASR = 11.8), primitive neuroectodermal tumours (PNET) (ASR = 6.5) and ependymoma (ASR = 3.4) were the most frequent types. Incidence increased significantly during 1978–1997, on average by 1.7% per year. Diagnostic methods may partially explain incidence rates and trends, although a role of variations in risk factors cannot be excluded. Overall 5-year survival was 64% and varied between 72% in the North and 53% in the East. PNET had the poorest prognosis (49%) and astrocytoma the best (75%). Survival has improved by 29% since late 1970s. The positive trends were seen in all regions, although the interregional differences persisted, as a reflection of the different healthcare systems.

© 2006 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Neoplasms of the central nervous system (CNS) represent 20% of all childhood cancer (age 0–14 years). They are the second most common group of neoplasms (after leukaemias) and the largest group of solid tumours in children of developed countries. In the 1980s and early 1990s, the incidence rates

of CNS tumours ranged between 20 and 40 per million in Europe and North America. Lower rates were observed in developing countries, which might reflect ethnic variations, differences in socio-economic factors, <sup>2,3</sup> but also lower availability of non-invasive diagnostic techniques. CNS tumours are the second cause of death from childhood cancer in Europe and North America. Survival in developed countries im-

<sup>&</sup>lt;sup>b</sup>Granada Cancer Registry, Andalusian School of Public Health, Granada, Spain

<sup>&</sup>lt;sup>c</sup>French National Registry of Childhood Solid Tumours, Faculty of Medicine, Vandoeuvre, France

<sup>&</sup>lt;sup>d</sup>Belorussian Childhood Cancer Subregistry, National Scientific and Practical Center of Childrens Oncology and Haematology, Minsk, Belarus

<sup>&</sup>lt;sup>e</sup>N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus

<sup>&</sup>lt;sup>f</sup>Paediatric Oncology Unit, Hospital de Cruces, Bilbao, Spain

gDescriptive Epidemiology Group, International Agency for Research on Cancer, Lyon, France

<sup>\*</sup> Corresponding author: Tel.: + 34 96 3983220. E-mail address: rafael.peris@uv.es (R. Peris-Bonet). 0959-8049/\$ - see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejca.2006.05.009

proved markedly,<sup>6-8</sup> but many survivors of CNS tumours suffer considerable sequelae that may imply lifetime medical surveillance.<sup>9</sup>

CNS tumours are a heterogeneous collection of neoplasms of different histology, behaviour and prognosis. Paediatric CNS tumours differ from adult CNS tumours considerably by histology and anatomical site. Main diagnostic groups in children are astrocytoma (38-50%), ependymoma (8-14%), primitive neuroectodermal tumours (PNET), including medulloblastoma (16-25%), and other gliomas (4-16%).1 There are large variations among these groups of childhood CNS tumours in terms of prognosis and response to therapies even within diagnostic categories. For example, 'astrocytoma' includes a variety of tumours, ranging from slowly growing pilocytic astrocytoma with a very good prognosis, to extremely malignant glioblastoma multiforme with some 2% 3-year survival. 10 The proportion of various histologies in a group may thus bias the interpretation of survival results. Vulnerability of the brain to therapies, especially in young ages, is a challenge for clinical management.11

The aim of this paper is to describe the incidence and survival of childhood CNS tumours in Europe and their geographical and temporal variations using a large European database of the Automated Childhood Cancer Information System (ACCIS).<sup>12</sup>

## 2. Material and methods

All 19,531 malignant and non-malignant tumours of the central nervous system (CNS), registered between 1978 and 1997 in patients aged less than 15 years and resident in the geographical areas covered by the participating registries at the time of diagnosis were extracted from the ACCIS database. Given a satisfactory evaluation of data comparability by the ACCIS Scientific Committee [Steliarova-Foucher, Kaatsch, Lacour and colleagues, this issue], 59 cancer registries in 19 European countries participated in this study (Table 1).

The tumours, classified according to the International Classification of Childhood Cancer (ICCC), 13 were all those belonging to the Group III (CNS and miscellaneous intracranial and intraspinal neoplasms). This group (short name 'CNS tumours') includes primary tumours of CNS of any behaviour and excludes the germ cell tumours, neuroblastoma and lymphomas of the CNS. The group is further split into six diagnostic subgroups: IIIa Ependymoma, IIIb Astrocytoma, IIIc PNET, IIId Other gliomas, IIIe Other specified CNS tumours, and IIIf Unspecified CNS tumours. Group IIIb comprises astrocytomas of any grade of malignancy and optic nerve glioma. Group IIId contains other gliomas, principally not otherwise specified, mostly with unspecified histology (NOS), mixed glioma and oligodendroglioma. Most of the tumours in group IIIe are of uncertain or benign behaviour, including meningioma, pinealoma and craniopharyngioma. To account for a possibility of different diagnostic and classification criteria across registries and time periods,<sup>7</sup> the groups IIIa, IIIb and IIId were pooled into a new category, 'Glioma-related tumours'.

Patterns of incidence and survival by sex, age and region were examined using a data-set of cases incident in the 10-year period 1988–1997, covered by almost all contributing registries, thus ensuring a reasonable stability of the estimates.

Countries were grouped into five geographical regions: British Isles, East, North, South and West (Table 1). The registries with sufficiently long registration period contributed to the time trend analyses (Table 1). The overall time period 1978–1997 was split in four 5-year periods, as shown in Table 2, which also provides information on the changes in distribution of cases and selected quality indicators over time.

In 27 of the contributing registries, non-malignant tumours were systematically registered (Table 1). Their pooled data, representing 86% of the person-years of the unrestricted data-set, were used to evaluate incidence and survival by the behaviour of CNS tumours and several distinct non-malignant tumour types.

Incidence rates were expressed as the average annual number of cases per million person-years and World standard population was used for age standardisation of the incidence rates (ASR). Differences in incidence rates for geographical areas and trends were evaluated using Poisson regression models, adjusted for age group and sex, using the British Isles as the region of reference. Average annual percent changes (AAPC) were derived from Poisson regression models of incidence rate on calendar year, adjusted for sex, age group and region.

Actuarial life-table method was used for survival analyses. The cases with zero follow-up time were excluded from the analyses (Tables 1 and 2). Differences between survival curves and trends were tested with the log-rank  $\chi^2$  tests. Most of the statistical analyses were conducted using the STATA software. Further general details on the database and methods of its exploration are described elsewhere [Steliarova-Foucher, Kaatsch, Lacour and colleagues, this issue].

### 3. Results

During 1988–1997, 11,829 cases of a primary CNS tumour were recorded in the participating registries (Table 3). Globally, 88% of cases were microscopically verified, ranging from 78% (British Isles) to 95% (West). In Europe, less than 3% of cases were diagnosed from death certificate only (in the set of registries with access to this source of data) or from an unknown source. Largest inter-regional variations were observed in the unspecified group, followed by the other gliomas group. In these two subgroups, a relatively large proportion of tumours was diagnosed only clinically (58% and 26%, respectively).

Most CNS tumours were malignant (87%), 10% uncertain and 3% benign (Table 3). A similar distribution of tumours by behaviour was seen in the restricted subset of data, constituted of the cancer registries with systematic registration of non-malignant tumours, with 85% of malignant, 11% uncertain and 3% of benign behaviour. The diagnostic groups of astrocytoma and PNET comprised only malignant tumours and there were only a few tumours with uncertain behaviour among other glioma group. The largest proportion of non-malignant tumours was seen in the North, both in the restricted (24%) and the non-restricted (15%) data-set. The widest geographical variation in the proportion of non-malignant tumours was found in the subgroup of unspecified CNS tumours, ranging from 9% in the East to 73% in the British Isles.

Table 1 – Datasets contributed by the European cancer registries for the analyses of central nervous system (CNS) tumours incidence and survival in children (age 0–14 years), with indicators of coverage, data quality and follow-up (Source: ACCIS)

|      | Region Registry |                                     | Covera    | age           |       | CNS tumours                |     | Ва | asis of | diagnosis | Survi |      |        | Follow-  | up           | Notes |
|------|-----------------|-------------------------------------|-----------|---------------|-------|----------------------------|-----|----|---------|-----------|-------|------|--------|----------|--------------|-------|
|      |                 |                                     | Period    | Time<br>trend | Cases | Non-malignant <sup>*</sup> | NOS | MV | DCO     | Unknown   | analy | rses | Median | 5+ years | Closing date |       |
|      |                 |                                     |           | ticiia        | n     | %                          | %   | %  | %       |           | n     | %    | Years  | %        |              |       |
| IR10 | British Isles   | IRELAND, National                   | 1994–1997 |               | 133   | 6                          | 2   | 91 | 0       | 0         | 132   | 99   | 3.2    | 0        | 31.12.1998   |       |
| UK2E |                 | UNITED KINGDOM,                     | 1978–1995 | +             | 4910  | 16                         | 6   | 78 | 1       | 6         | 4744  | 97   | 12     | 99       | 31.1.2001    | P     |
|      |                 | England & Wales                     |           |               |       |                            |     |    |         |           |       |      |        |          |              |       |
| UKNI |                 | UNITED KINGDOM,                     | 1993–1996 |               | 63    | 29                         | 52  | 59 | 0       | 0         | 63    | 100  | 1.1    | 15       | 31.12.1999   |       |
| UKSC |                 | Northern Ireland<br>UNITED KINGDOM, | 1978–1997 | +             | 541   | _                          | 1   | 90 | 0       | 0         | 535   | 99   | 11.0   | 84       | 31.12.1999   |       |
| UKSC |                 | Scotland                            | 19/8-199/ | +             | 541   | -                          | 1   | 90 | U       | U         | 535   | 99   | 11.0   | 84       | 31.12.1999   |       |
|      |                 | Scotiana                            |           |               |       |                            |     |    |         |           |       |      |        |          |              |       |
| BA10 | East            | BELARUS, National                   | 1989–1997 |               | 653   | 9                          | 25  | 80 | 0       | 0         | 635   | 97   | 5.9    | 64       | 1.9.2000     | P     |
| ES10 |                 | ESTONIA, National                   | 1978–1997 | +             | 184   | _                          | 22  | 78 | 0       | 0         | 171   | 93   | 5.9    | 57       | 31.12.1998   |       |
| HU30 |                 | HUNGARY, National                   | 1978–1997 | +             | 1212  | 13                         | 4   | 85 | -       | 0         | 1190  | 98   | 0.5    | 40       | 1.1.2000     | P     |
| SK10 |                 | SLOVAKIA, National                  | 1978–1997 | +             | 725   | 8                          | 20  | 80 | 3       | 0         | 588   | 81   | 7.7    | 64       | 31.12.1997   |       |
| GEEA |                 | GERMANY, NCR (only                  | 1978–1989 | +             | 1185  | 14                         | 10  | 93 | 0       | 0         | 862   | 73   | 5.7    | 55       | 31.12.1987   | S     |
|      |                 | former East)                        |           |               |       |                            |     |    |         |           |       |      |        |          |              |       |
| DK10 | North           | DENMARK, National                   | 1978–1997 | +             | 776   | 26                         | 22  | 81 | <1      | 1         | 751   | 97   | 8.9    | 72       | 31.12.1997   |       |
| FI10 |                 | FINLAND, National                   | 1978–1997 | +             | 758   | 8                          | 10  | 94 | 0       | <1        | 735   | 97   | 9.1    | 75       | 31.12.1998   |       |
| IC10 |                 | ICELAND, National                   | 1978-1997 | +             | 45    | 11                         | 9   | 93 | 0       | 0         | 45    | 100  | 12.9   | 81       | 31.12.2000   |       |
| NO10 |                 | NORWAY, National                    | 1978–1997 | +             | 595   | 7                          | 19  | 89 | <1      | 0         | 594   | 100  | 10.5   | 80       | 1.1.2000     |       |
|      |                 |                                     |           |               |       |                            |     |    |         |           |       |      |        |          |              |       |
| IT31 | South           | ITALY, Piedmont                     | 1978–1997 | +             | 448   | 24                         | 17  | 81 | <1      | 0         | 448   | 100  | 11.2   | 89       | 31.12.1999   | P     |
| IT32 |                 | paediatric<br>ITALY, Marche         | 1990–1997 |               | 41    | _                          | 29  | 73 | _       | 17        | 41    | 100  | 6.0    | 65       | 30.9.2000    | P     |
| ITFE |                 | ITALY, Ferrara                      | 1991–1995 |               | 6     | _                          | 50  | 50 | - 0     | 0         | 6     | 100  | 3.7    | 40       | 31.12.1998   | Г     |
| ITLA |                 | ITALY, Latina                       | 1983–1997 | +             | 29    | _                          | 24  | 72 | 0       | 7         | 29    | 100  | 6.3    | 64       | 31.12.1998   |       |
| ITLI |                 | ITALY, Liguria                      | 1988–1995 |               | 13    | 8                          | 23  | 38 | 0       | 0         | 13    | 100  | 7.6    | 86       | 15.4.2000    |       |
| ITLO |                 | ITALY, Lombardy                     | 1978–1997 | +             | 85    | _                          | 8   | 84 | 1       | 0         | 84    | 99   | 7.3    | 65       | 23.9.1999    |       |
| ITPA |                 | ITALY, Parma                        | 1978–1995 | +             | 31    | 13                         | 10  | 90 | 0       | 0         | 31    | 100  | 12.8   | 100      | 1.4.1999     |       |
| ITRA |                 | ITALY, Ragusa                       | 1983-1997 | +             | 21    | _                          | 29  | 76 | 0       | 0         | 21    | 100  | 11.6   | 86       | 30.3.2000    |       |
| ITSA |                 | ITALY, Sassari                      | 1992-1995 |               | 9     | _                          | 22  | 67 | 0       | 22        | 9     | 100  | 5.7    | 100      | 30.12.1999   |       |
| ITTU |                 | ITALY, Tuscany                      | 1988-1997 |               | 44    | 23                         | 18  | 70 | 2       | 0         | 43    | 98   | 5.6    | 63       | 31.12.1998   |       |
| ITUM |                 | ITALY, Umbria                       | 1994–1996 |               | 16    | -                          | 31  | 75 | 0       | 0         | 16    | 100  | 3.8    | 22       | 31.12.1999   |       |
| ITVE |                 | ITALY, Veneto                       | 1990–1996 |               | 58    | -                          | 10  | 86 | 0       | 0         | 58    | 100  | 4.1    | 39       | 31.12.1998   |       |
| ML10 |                 | MALTA, National                     | 1991–1997 |               | 17    | 29                         | 12  | 88 | 0       | 0         | 17    | 100  | 4.9    | 43       | 31.12.1999   |       |
|      |                 |                                     |           |               |       |                            |     |    |         |           |       |      |        |          |              |       |

| SL10         | SLOVENIA, National                | 1978–1997 | + | 184      | 5      | 13      | 91       | 0  | 0  | 179 97           | 9.9     | 31.12.1999                  |         |
|--------------|-----------------------------------|-----------|---|----------|--------|---------|----------|----|----|------------------|---------|-----------------------------|---------|
| SP20         | SPAIN, National                   | 1990–1995 |   | 311      | 10     | 10      | 81       | 0  | 2  | 298 96           | 6.0     | 31.12.2000                  | P o1 Z  |
| SPAL         | SPAIN, Albacete                   | 1991–1997 |   | 10       | -      | 0       | 80       | 0  | 0  | 10 100           | 6.5     | 15.9.2000                   |         |
| SPAS         | SPAIN, Asturias                   | 1983-1997 | + | 65       | 9      | 20      | 85       | 0  | 0  | 61 94            | 8.4     | 73 31.12.1997               |         |
| SPBC         | SPAIN, Basque Country             | 1988-1994 |   | 75       | -      | 25      | 77       | 1  | 0  | 74 99            | 9.8 1   | 31.12.2000                  | o1      |
| SPCI         | SPAIN, Canary Islands             | 1993-1996 |   | 35       | -      | 3       | 71       | 3  | 0  |                  | _       |                             |         |
| SPGI         | SPAIN, Girona                     | 1994-1997 |   | 11       | -      | 18      | 82       | 0  | 9  | 11 100           | 2.7     | 0 31.12.1997                | o1      |
| SPGR         | SPAIN, Granada                    | 1988-1997 |   | 37       | -      | 8       | 92       | 0  | 5  | 33 89            | 6.6     | 31.12.1999                  | G       |
| SPMA         | SPAIN, Mallorca                   | 1988-1995 |   | 28       | -      | 18      | 86       | 0  | 0  | 26 93            | 7.5     | 31.12.1998                  | o1      |
| SPNA         | SPAIN, Navarra                    | 1978-1996 | + | 56       | -      | 18      | 86       | 0  | 0  | 56 100           | 11.1    | 31.12.1997                  | o1      |
| SPTA         | SPAIN, Tarragona                  | 1983-1997 | + | 32       | -      | 25      | 75       | 0  | 0  | 29 91            | 5.4     | 31.12.1998                  | o1      |
| SPZA         | SPAIN, Zaragoza                   | 1978-1996 | + | 87       | 22     | 16      | 70       | 17 | 3  | 73 84            | 8.2     | 72 31.12.1996               | o1      |
| TRIZ         | TURKEY, Izmir                     | 1993-1996 |   | 50       | -      | 4       | 86       | -  | 0  |                  |         | -                           |         |
| FR3B West    | FRANCE, Brittany                  | 1991–1997 |   | 120      | 21     | 3       | 98       | _  | 2  | 118 98           | 4.0     | 37 1.1.2000                 | P       |
| FR3L West    | FRANCE, brittary FRANCE, Lorraine | 1983–1997 | + | 230      | 13     | 3<br>1  | 80       | _  | 0  | 230 100          |         | 57 1.1.2000                 | P       |
| FR3P         | FRANCE, PACA                      | 1984–1996 |   | 314      | 13     | 4       | 95       | _  | 0  | 288 92           |         |                             | P       |
| FR3P<br>FR3R | FRANCE, PACA FRANCE, Rhone Alpes  | 1984–1996 | + | 326      | 13     | 4<br><1 | 90       | _  | 0  | 288 92<br>310 95 |         | 49 31.3.1998<br>42 1.6.2000 | P o2    |
| FRDO         | FRANCE, Mione Aipes FRANCE, Doubs | 1978–1996 |   | 45       | -      | 11      | 22       | _  | 4  | 43 96            |         |                             | P 02    |
| FRHE         | FRANCE, Herault                   | 1978–1996 | + | 45<br>34 | _      | 9       | 56       | _  | 0  |                  |         | 32 1.6.2001                 |         |
| FRIS         | •                                 |           |   |          | -<br>7 | 9<br>5  | 90       |    | 7  |                  |         | -                           | -0      |
| FRIS         | FRANCE, Isere                     | 1979–1997 | + | 135<br>7 | /      | 0       | 90<br>71 | _  | 0  | <br>1 14         | <br>4.6 |                             | o2<br>S |
|              | FRANCE, Manche                    | 1994–1996 |   |          | -      | -       |          |    |    |                  |         |                             | 5       |
| FRRB         | FRANCE, Bas-Rhin                  | 1978–1996 | + | 81       | -      | 14      | 85       | -  | 0  | 81 100           |         | 74 31.12.1997               | C       |
| FRRH         | FRANCE, Haut-Rhin                 | 1988–1997 |   | 37       | -      | 0       | 97       | -  | 0  | 18 49            |         | 73 31.12.1995               | S       |
| FRSO         | FRANCE, Somme                     | 1983–1996 | + | 33       | -      | 6       | 91       | -  | 0  | 33 100           |         | 15.8.2000                   |         |
| FRTA         | FRANCE, Tarn                      | 1983–1997 | + | 20       | -      | 5       | 85       | -  | 0  |                  |         |                             | D       |
| GE10         | GERMANY, GCCR (East and West)     | 1991–1997 | + | 2333     | 16     | 5       | 98       | -  | 0  |                  |         | 28 31.12.1998               | P       |
| GEWE         | GERMANY, GCCR (only former West)  | 1983–1990 | + | 1692     | 18     | 8       | 99       | -  | 0  | 1578 93          |         | 74 31.12.1998               | P       |
| NL10         | NETHERLANDS, National             | 1989–1995 |   | 569      | -      | 8       | 92       | -  | 0  | 558 98           |         | 56 31.12.1998               | S 03    |
| NLEI         | NETHERLANDS, Eindhoven            | 1978–1997 | + | 93       | -      | 13      | 86       | -  | 0  | 93 100           |         | 34 1.7.1999                 | 03      |
| SZBA         | SWITZERLAND, Basel                | 1983–1997 | + | 25       | -      | 4       | 92       | -  | 0  | 25 100           |         | 30.6.2000                   |         |
| SZGE         | SWITZERLAND, Geneva               | 1978–1997 | + | 41       | -      | 10      | 93       | 0  | 0  | 41 100           |         | 57 31.12.1999               |         |
| SZGG         | SWITZERLAND, Graubunden & Glarus  |           |   | 11       | -      | 27      | 64       | 0  | 18 | 11 100           |         | 29 25.5.2000                |         |
| SZSG         | SWITZERLAND, St. Gallen Appenzell | 1983–1997 | + | 46       | 11     | 9       | 87       | 0  | 0  | 46 100           |         | 38 1.2.2001                 |         |
| SZVL         | SWITZERLAND, Valais               | 1989–1997 |   | 14       | -      | 14      | 93       | 0  | 0  | 6 43             | 8.3     | 00 1.12.1998                | S       |

<sup>-:</sup> Not applicable; +: Included in time trend analyses; 5+ years: Cases followed-up for 5 or more years, as a percentage of all those not deceased by the closing date; DCO: Registrations from death certificate only; G: General cancer registry, which has only contributed data for age-range 0–14 years; GCCR: National German Childhood Cancer Registry (until 1990 covering only West and since 1991 the reunified Germany); MV: Microscopically verified cases; N: Number of cases; NCR: National Cancer Registry of the former German Democratic Republic. Data for 1978–1987 contributed only to analyses of time trends for Europe as a whole. Data for 1988–1989 were pooled with GCCR and included in West. For explanation, see Steliarova-Foucher, Kaatsch, Lacour and colleagues (this issue); NOS: Cases with unspecified histology, including the ICCC category IIIf; o1-o3: Overlapping registration areas: for the overlapping years, data from the registry with larger coverage are included in each analysis, according to availability; P: Paediatric cancer registry; age range for all registrations is 0–14 years; PACA: Provence, Alps, Côte d'Azur; S: Survival analyses were possible only for a restricted dataset (see Steliarova-Foucher, Kaatsch, Lacour and colleagues, this issue); Unknown, Registrations with unknown basis of diagnosis; Z: Covers only selected areas, see Steliarova-Foucher, Kaatsch, Lacour and colleagues (this issue).

<sup>\*</sup> Non-malignant tumours (%) of CNS is only given for the registries with systematic registration of non-malignant tumours.

| Table 2 – Numbers of cases and indicators of data quality by region and age group used for time trend analyses of CNS |
|-----------------------------------------------------------------------------------------------------------------------|
| tumours incidence and survival in children (age 0-14 years) in Europe, 1978-1997 (Source: ACCIS)                      |

| Region              | Period  |            | CNS tumours        |          | I       | Basis of d | iagnosis     | Follow-up     |                |  |
|---------------------|---------|------------|--------------------|----------|---------|------------|--------------|---------------|----------------|--|
|                     |         | Cases<br>n | Non-malignant<br>% | NOS<br>% | MV<br>% | DCO<br>%   | Unknown<br>% | 0 + days<br>% | 5 + years<br>% |  |
| Europe <sup>a</sup> | 1978–82 | 3100       | 14                 | 11       | 82      | <1         | 1            | 93            | 96             |  |
| -                   | 1983-87 | 4592       | 14                 | 9        | 86      | <1         | 1            | 96            | 77             |  |
|                     | 1988-92 | 4854       | 13                 | 7        | 87      | <1         | 3            | 95            | 79             |  |
|                     | 1993–97 | 4511       | 15                 | 8        | 90      | <1         | 1            | 87            | 32             |  |
| British Isles       | 1978-82 | 1425       | 14                 | 5        | 81      | <1         | 2            | 96            | 99             |  |
|                     | 1983-87 | 1434       | 14                 | 5        | 78      | 1          | 5            | 96            | 99             |  |
|                     | 1988-92 | 1493       | 13                 | 6        | 76      | 2          | 10           | 98            | 99             |  |
|                     | 1993–97 | 1099       | 16                 | 6        | 82      | 2          | 5            | 97            | 93             |  |
| East                | 1978–82 | 399        | 8                  | 19       | 73      | 2          | 0            | 83            | 74             |  |
|                     | 1983-87 | 607        | 9                  | 11       | 82      | <1         | 0            | 92            | 48             |  |
|                     | 1988-92 | 551        | 12                 | 9        | 85      | <1         | 0            | 94            | 63             |  |
|                     | 1993–97 | 564        | 12                 | 7        | 88      | <1         | 0            | 96            | 21             |  |
| North               | 1978–82 | 502        | 14                 | 18       | 88      | <1         | 1            | 97            | 100            |  |
|                     | 1983-87 | 483        | 12                 | 16       | 88      | 0          | 0            | 98            | 100            |  |
|                     | 1988-92 | 573        | 12                 | 13       | 88      | <1         | <1           | 98            | 99             |  |
|                     | 1993–97 | 616        | 17                 | 20       | 87      | <1         | <1           | 98            | 24             |  |
| South               | 1978–82 | 248        | 25                 | 26       | 71      | 6          | 1            | 94            | 99             |  |
|                     | 1983-87 | 291        | 13                 | 16       | 83      | 0          | 0            | 99            | 100            |  |
|                     | 1988-92 | 258        | 9                  | 11       | 88      | 0          | <1           | 99            | 97             |  |
|                     | 1993–97 | 241        | 10                 | 11       | 87      | <1         | <1           | 98            | 38             |  |
| West                | 1978–82 | 102        | 8                  | 11       | 74      | 0          | 0            | 99            | 92             |  |
|                     | 1983–87 | 1234       | 17                 | 8        | 97      | 0          | <1           | 96            | 76             |  |
|                     | 1988-92 | 1761       | 15                 | 6        | 96      | 0          | <1           | 90            | 60             |  |
|                     | 1993–97 | 1991       | 15                 | 5        | 96      | 0          | <1           | 73            | 8              |  |

0 + days: Cases followed-up for 1 or more days, as a percentage of all cases in the registries with follow-up; 5 + years: Cases followed-up for 5 or more years, as a percentage of all those not deceased by the closing date; DCO: Cases registered from death certificate only; MV: Microscopically verified diagnosis; n: Number of cases; Non-malignant: Includes intracranial and intraspinal non-malignant CNS tumours; NOS: Cases with unspecified histology ICCC (subgroup IIIf).

a Europe includes the data of former German Democratic Republic, not included in any other region.

Considering all CNS tumours in the European pool, the ASR was 29.9 per million children. The most frequent diagnostic group was astrocytoma, accounting for 40% of all CNS tumours (ASR = 11.8), followed by PNET (ASR = 6.5). The highest incidence rate for all CNS tumours combined was in the North (ASR = 43.8) and the lowest in the West (ASR = 27.0) (Table 3). Also, the rates for the glioma-related group and most of the subgroups were significantly higher in the North and lower in the West than those of the reference region (British Isles) (Table 3). The high overall rates of CNS tumours in the North reflected mainly the high incidence of other gliomas and, to a lesser degree, of unspecified and other specified CNS tumours. Few other differences were observed between the regions by diagnostic subgroup (Fig. 1).

In the restricted data-sets comprising the cancer registries with systematic collection of non-malignant tumours the overall age-standardised incidence rate was 30.2 per million. The highest incidence rates were observed in the North (for both malignant and non-malignant tumours) and the lowest in the West (Table 4).

The incidence rates for selected tumour types of the IIIe subgroup (other specified), including those with non-malignant behaviour, were estimated from the restricted data-set

(Table 5). Gangliogliomas had significantly higher rates in the North (n=29, IRR = 2.2, 95% confidence interval (CI) 1.3–3.8) and the West (n=98, IRR = 1.7, 95% CI 1.1–2.5). Meningiomas were most frequent in the North (n=22, IRR = 2.3, 95% CI 1.3–3.9) as well as pineal parenchymal tumours (n=25, IRR = 3.8, 95% CI 2.2–6.7). No other geographical differences were observed for these specified tumour types.

All CNS tumours combined and ependymoma showed a slightly higher, statistically significant, frequency among boys than among girls. The highest sex ratio was seen for PNET with about 60% excess of boys (Table 3). Overall, 36% of cases were less than 5 years of age. The CNS tumours were most commonly diagnosed in the age groups 1–4 and 5–9, but the age distribution differed by diagnostic groups (Table 3 and Fig. 2). Age distribution of the malignant and non-malignant tumours is compared in Fig. 3.

A total of 17,057 cases were included in the analyses of incidence time trends for years 1978–1997 (Table 2). Of these, 91 were multiple primary tumours. Overall, microscopically verified diagnosis (%MV) increased over the years in Europe up to 90%, while unknown basis and cases registered from death certificate only (in the registries with access to this source of data) were around 1% or less than this (Table 2).

(0.84, 1.00) (0.79, 0,89) ns

0.000

| (Source: ACC            | HS)              |              | ıl nervo     |              |              |              |                         |        |          |          |            |                              |             |
|-------------------------|------------------|--------------|--------------|--------------|--------------|--------------|-------------------------|--------|----------|----------|------------|------------------------------|-------------|
|                         | n                |              |              |              | ates per r   | nillion      |                         | В      | Behaviou | ır       |            | IRR                          |             |
|                         |                  |              | Age spe      | cific rat    | es           | AS           | SR                      | Ве     | Un       | Ма       | IRR        | (95% CI)                     | P valu      |
|                         |                  | 0            | 1–4          | 5–9          | 10–14        | 0–14a        | M/F                     | %      | %        | %        |            |                              |             |
| III.CNS                 | 44000            | 00.5         |              |              |              |              | *                       |        |          | 0=       |            |                              |             |
| EUROPE                  | 11829            | 28.5         | 33.9         | 31.3         | 24.3<br>25.5 | 29.9         | 1.1                     | 3<br>3 | 10       | 87<br>96 | 1          |                              |             |
| British Isles           | 2788             | 30.9         | 32.7         | 32.3         |              | 30.3         | 1.0<br>1.1 <sup>*</sup> | 2      | 11       | 86<br>80 | 1          | (0.00, 1.11)                 | ne          |
| East<br>North           | 1768<br>1189     | 27.3<br>46.9 | 37.3<br>49.5 | 32.1<br>45.1 | 26.8<br>35.5 | 31.8<br>43.8 | 1.1<br>1.2 <sup>*</sup> | 5      | 8<br>9   | 89<br>85 | 1.0<br>1.4 | (0.99, 1.11)<br>(1.34, 1.54) | ns<br>0.000 |
| South                   | 1131             | 18.3         | 49.5<br>35.0 | 30.0         | 25.5         | 29.3         | 1.2                     | 2      | 6        | 92       | 1.4        | , ,                          |             |
| West                    | 4953             | 26.5         | 31.0         | 28.9         | 20.9         | 27.0         | 1.2<br>1.2*             | 3      | 11       | 92<br>87 | 0.9        | (0.90, 1.04)<br>(0.85, 0.93) | ns<br>0.000 |
| West                    | <del>1</del> 233 | 20.5         | 31.0         | 20.5         | 20.5         | 27.0         | 1.2                     | 3      | 11       | 67       | 0.5        | (0.85, 0.55)                 | 0.000       |
| IIIa. Ependym           | oma              |              |              |              |              |              |                         |        |          |          |            |                              |             |
| EUROPE                  | 1260             | 6.1          | 5.4          | 2.3          | 1.7          | 3.4          | 1.2*                    | 11     | 4        | 85       |            |                              |             |
| British Isles           | 273              | 5.5          | 5.1          | 1.9          | 1.7          | 3.1          | 1.3                     | 12     | 6        | 82       | 1          |                              |             |
| East                    | 170              | 3.4          | 6.3          | 1.7          | 1.9          | 3.3          | 1.3                     | 6      | 5        | 89       | 1.1        | (0.88, 1.30)                 | ns          |
| North                   | 108              | 6.8          | 5.5          | 3.2          | 2.7          | 4.1          | 1.4                     | 7      | 5        | 88       | 1.3        | (1.07, 1.67)                 | 0.011       |
| South                   | 143              | 6.7          | 5.8          | 3.9          | 1.7          | 4.0          | 1.1                     | 6      | 3        | 90       | 1.3        | (1.08, 1.62)                 | 0.007       |
| West                    | 566              | 6.9          | 5.3          | 2.2          | 1.4          | 3.3          | 1.1                     | 13     | 2        | 84       | 1.1        | (0.91, 1.21)                 | ns          |
| IIIb. Astrocyto         | ma               |              |              |              |              |              |                         |        |          |          |            |                              |             |
| EUROPE                  | 4717             | 8.2          | 12.9         | 12.6         | 10.7         | 11.8         | 1.0                     | 0      | 0        | 100      |            |                              |             |
| British Isles           | 1207             | 9.4          | 14.1         | 14.4         | 11.5         | 13.1         | 0.9                     | 0      | 0        | 100      | 1          |                              |             |
| East                    | 679              | 7.1          | 13.0         | 12.2         | 11.9         | 12.0         | 1.0                     | 0      | 0        | 100      | 0.9        | (0.84, 1.01)                 | ns          |
| North                   | 321              | 7.1          | 13.7         | 12.4         | 10.1         | 11.8         | 1.1                     | 0      | 0        | 100      | 0.9        | (0.79, 1.01)                 | ns          |
| South                   | 446              | 7.3          | 12.2         | 10.5         | 12.1         | 11.2         | 1.1                     | 0      | 0        | 100      | 0.9        | (0.79, 0.98)                 | 0.017       |
| West                    | 2064             | 8.1          | 12.3         | 12.2         | 9.6          | 11.2         | 1.1                     | 0      | 0        | 100      | 0.9        | (0.79, 0.91)                 | 0.000       |
| west                    | 2004             | 0.1          | 12.3         | 12.2         | 9.0          | 11.2         | 1.1                     | U      | U        | 100      | 0.9        | (0.79, 0.91)                 | 0.000       |
| IIIc. PNET              |                  |              |              |              |              |              |                         |        |          |          |            |                              |             |
| EUROPE                  | 2549             | 5.8          | 7.9          | 7.6          | 4.1          | 6.5          | 1.6                     | 0      | 0        | 100      |            |                              |             |
| British Isles           | 563              | 6.8          | 7.2          | 7.0          | 4.1          | 6.2          | 1.4*                    | 0      | 0        | 100      | 1          |                              |             |
| East                    | 377              | 5.0          | 8.0          | 8.7          | 4.1          | 6.9          | 1.5*                    | 0      | 0        | 100      | 1.1        | (0.98, 1.27)                 | ns          |
| North                   | 175              | 8.9          | 8.4          | 6.7          | 3.8          | 6.6          | 1.6                     | 0      | 0        | 100      | 1.1        | (0.89, 1.25)                 | ns          |
| South                   | 226              | 0.5          | 7.9          | 7.1          | 4.1          | 6.0          | 1.6                     | 0      | 0        | 100      | 1.0        | (0.86, 1.17)                 | ns          |
| West                    | 1208             | 6.0          | 8.1          | 7.7          | 4.1          | 6.6          | 1.8*                    | 0      | 0        | 100      | 1.1        | (0.97, 1.19)                 | ns          |
| IIId. Other glic        | mae              |              |              |              |              |              |                         |        |          |          |            |                              |             |
| EUROPE                  | 1246             | 2.1          | 3.1          | 3.5          | 2.9          | 3.1          | 0.9                     | 0      | 3        | 97       |            |                              |             |
| British Isles           | 333              | 2.1          | 2.9          | 4.8          | 3.2          | 3.6          | 0.9                     | 0      | 4        | 96       | 1          |                              |             |
| East                    | 124              | 2.2          | 1.9          | 2.5          | 2.1          | 2.2          | 1.1                     | 0      | 2        | 98       | 0.6        | (0.49, 0.75)                 | 0.000       |
| North                   | 278              | 5.2          | 11.6         | 10.6         | 9.4          | 10.2         | 0.9                     | 0      | 0.7      | 99       | 2.8        | (2.40, 3.30)                 | 0.000       |
| South                   | 107              | 1.8          | 3.8          | 2.1          | 2.7          | 2.8          | 1.3                     | 0      | 0.7      | 99       | 0.8        | (0.61, 0.94)                 | 0.000       |
| West                    | 404              | 1.5          | 2.1          | 2.1          | 2.7          | 2.8          | 0.8*                    | 0      | 5        | 95       | 0.6        | (0.51, 0.94)                 | 0.000       |
| WEST                    | 404              | 1.3          | 2.1          | 2.5          | 2.0          | 2.2          | 0.8                     | U      | J        | 93       | 0.0        | (0.32, 0.70)                 | 0.000       |
| IIIe. Other spe         | cified           |              |              |              |              |              |                         |        |          |          |            |                              |             |
| EUROPE                  | 1018             | 1.9          | 1.8          | 2.7          | 3.1          | 2.5          | 1.1                     | 13     | 73       | 13       |            |                              |             |
| British Isles           | 228              | 2.5          | 1.6          | 2.4          | 3.3          | 2.4          | 1.2                     | 14     | 75       | 11       | 1          |                              |             |
| East                    | 169              | 0.9          | 2.1          | 3.1          | 3.9          | 2.8          | 0.9                     | 18     | 69       | 12       | 1.2        | (0.97, 1.45)                 | ns          |
| North                   | 105              | 4.7          | 3.2          | 3.7          | 4.3          | 3.8          | 1.3                     | 10     | 68       | 22       | 1.5        | (1.23, 1.95)                 | 0.000       |
| South                   | 76               | 0.4          | 1.1          | 2.2          | 2.4          | 1.8          | 1.5                     | 16     | 63       | 21       | 0.8        | (0.60, 1.01)                 | ns          |
| West                    | 440              | 1.8          | 1.7          | 2.7          | 2.7          | 2.3          | 1.1                     | 11     | 78       | 11       | 1.0        | (0.81, 1.12)                 | ns          |
| IIf IIncocif            | d                |              |              |              |              |              |                         |        |          |          |            | ·                            |             |
| IIf. Unspecifie         |                  | 4.4          | 0.0          | 0.7          | 0.0          | 0.7          | 0.0                     | 7      | 22       | 60       |            |                              |             |
| EUROPE<br>British Isles | 1039             | 4.4          | 2.9          | 2.7          | 2.0          | 2.7          | 0.9                     | 7<br>9 | 33<br>64 | 60<br>27 | 1          |                              |             |
|                         | 184              | 4.4<br>o 7   | 1.8          | 1.8          | 1.8          | 2.0          | 0.8                     |        |          | 27       | 1          | (1 07 0 72)                  | 0.000       |
| East                    | 249              | 8.7          | 6.1          | 3.9          | 3.0          | 4.7          | 1.0                     | 0.4    | 9<br>1E  | 91<br>62 | 2.3        | (1.87, 2.73)                 | 0.000       |
| North                   | 202              | 13.5         | 7.1          | 8.5          | 5.1          | 7.5          | 1.2                     | 23     | 15       | 62<br>or | 3.7        | (3.03, 4.52)                 | 0.000       |
| South                   | 133              | 1.8          | 4.2          | 4.2          | 2.4          | 3.5          | 1.1                     | 2      | 13       | 85<br>20 | 1.8        | (1.40, 2.19)                 | 0.000       |
| West                    | 271              | 2.3          | 1.6          | 1.6          | 1.1          | 1.5          | 0.7*                    | 3      | 58       | 39       | 0.7        | (0.61, 0.89)                 | 0.002       |
| IIa + b + d             |                  |              |              |              |              |              |                         |        |          |          |            |                              |             |
| EUROPE                  | 7223             | 16.4         | 21.4         | 18.4         | 15.2         | 18.2         | 1.0                     | 2      | 1        | 97       |            |                              |             |
| British Isles           | 1813             | 17.3         | 22.1         | 21.1         | 16.4         | 19.7         | 1.0                     | 2      | 2        | 97       | 1          |                              |             |
| East                    | 973              | 12.7         | 21.2         | 16.4         | 16.0         | 17.4         | 1.1                     | 1      | 1        | 98       | 0.9        | (0.82, 0.96)                 | 0.002       |
| North                   | 707              | 19.8         | 30.8         | 26.2         | 22.2         | 26.0         | 1.1                     | 1      | 1        | 98       | 1.3        | (1.21, 1.43)                 | 0.000       |
| _ ,                     |                  |              | 04.7         | 465          | 16.6         | 10.1         |                         |        | 0.0      | 00       | 0.0        | (0.04.4.00)                  |             |

South

West

696

3034

15.6

16.4

21.7

19.7

16.5

17.0

16.6

13.0

18.1

16.6

1.1

1.0

1

3

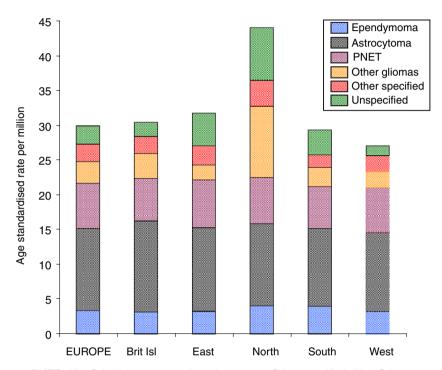
0.9

1

98

96

0.9


8.0

## Table 3 - continued

Number of cases, age-specific and age standardised incidence rates, and behaviour, by diagnostic group and geographical region; and incidence rate ratios between regions (Poisson regression analysis).

n: Number of cases; ASR: Age-standardised incidence rate; M/F: Ratio of the age-standardised rates for boys and girls; Be: Benign; Un: Uncertain; Ma: Malignant; IRR: Incidence rate ratio; (95% CI): 95% confidence interval; ns:  $P \ge 0.05$ ; CNS: All central nervous system tumours combined (Group III. CNS and miscellaneous intracranial and intraspinal neoplasms) (ICCC)<sup>13</sup>; PNET: IIIc. Primitive neuroectodermal tumours; Other specified: IIIe. Other specified intracranial and intraspinal neoplasms; Unspecified: IIIf. Unspecified intracranial and intraspinal neoplasms; IIIa + b + d: Glioma-related (IIIa Ependymoma, IIIb Astrocytoma, IIId Other gliomas).

Rates are statistically different at 5% level.



PNET: IIIc. Primitive neuroectodermal tumours; Others pecified: IIIe. Other specified intracranial and intraspinal neoplasms; Unspecified: IIIf. Unspecified intracranial and intraspinal neoplasms.

Fig. 1 – Incidence of central nervous system (CNS) tumours in children (0–14 years) in Europe, 1988–1997 by diagnostic group and region (n = 11,829). Age-standardised rates (ASR), world standard population. Source: ACCIS.

Rising incidence was recorded for the CNS tumours combined and some subgroups (Fig. 4). The rates of CNS tumours combined increased on average by 1.7% (P < 0.0001) per year. Increase was also observed for the rates of astrocytoma (n = 6561, AAPC = 2.5%, P < 0.0001), PNET (n = 3592, 1.3%, P < 0.0001), and the combined glioma-related group (n = 10,495, AAPC = 1.9, P < 0.0001), although the incidence of the other gliomas did not increase (n = 1976, AAPC = 0.3%, P = 0.5). Other specified CNS tumours increased markedly (n = 1485, AAPC = 2.4%, P < 0.0001), while incidence of ependymoma did not change (n = 1958, 0.8%, P = 0.07). Similar pattern was observed in the restricted data-set (Fig. 5), with malignant tumours increasing on average by 1.8% per year (P < 0.0001, n = 13,411) and non-malignant tumours by 1.7% (P < 0.0001; n = 2360).

The 10,532 cases diagnosed in 1988–1997 were included in the survival analysis, after excluding 915 cases with a followup shorter than 1 day (Table 6). For the pooled European data, 5-year survival was 64%. The North was the area with the highest 5-year survival rate (72%), significantly different  $(\chi^2 = 20.53, P < 0.0001)$  from the other three regions in second rank, British Isles, South and West (pooled estimate of 5-year survival 65% with 95% CI 64-66). The East presented the poorest survival rate (53%). Exclusion of non-malignant tumours from this data-set reduced the 5-year survival by about 2-3 percentage points in Europe and its regions. Based on the total of 9225 malignant tumours, 5-year survival was 61%, with 95% CI 60-62. Similar reduction was seen for the British Isles (n = 2351, 59%, 95% CI 57–61), East (n = 1509, 52%, 95% CI 49–54), North (n = 1001, 69%, 95% CI 66–72), South (n = 929, 64%, 95% CI 61-67) and West (n = 3435, 63%, 95% CI)61-65). Comparing these results with data in Tables 3 and 6, the reduction in survival after exclusion of non-malignant tumours roughly followed the differences in the proportion of non-malignant tumours in the different geographical areas. The survival figures shown above correspond almost

Table 4 – Incidence and survival of malignant and non-malignant central nervous system (CNS) tumours in Europe, based on the data from the registries with systematic collection of non-malignant tumours (Source: ACCIS)

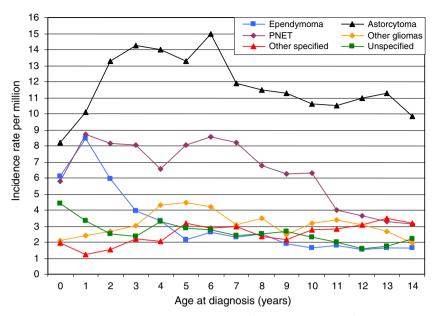
|           |                       |      | Ind   | cidence |          | Survival |          |          |               |         |          |  |  |
|-----------|-----------------------|------|-------|---------|----------|----------|----------|----------|---------------|---------|----------|--|--|
|           |                       | Mali | gnant | Non-ma  | alignant |          | Malignar | nt       | Non-malignant |         |          |  |  |
|           |                       | n    | ASR   | n       | ASR      | n        | 5-year%  | (95% CI) | n             | 5-year% | (95% CI) |  |  |
| 1988–1997 | TOTAL                 | 8786 | 25.9  | 1498    | 4.3      | 8056     | 61       | (60,62)  | 1286          | 84      | (81,86)  |  |  |
|           | MV                    | 89%  |       | 18%     |          |          |          |          |               |         |          |  |  |
|           | IIIa. Ependymoma      | 897  | 2.8   | 181     | 0.6      | 781      | 53       | (49,57)  | 162           | 86      | (79,91)  |  |  |
|           | IIIb. Astrocytoma     | 4028 | 11.7  | 0       | -        | 3603     | 75       | (73,76)  | 0             | -       | _        |  |  |
|           | IIIc. PNET            | 2189 | 6.5   | 0       | -        | 2151     | 49       | (46,51)  | 0             | -       | -        |  |  |
|           | IIId. Other gliomas   | 1070 | 3.1   | 37      | 0.1      | 998      | 55       | (52,59)  | 30            | 81      | (60,92)  |  |  |
|           | IIIe. Other specified | 114  | 0.3   | 869     | 2.4      | 105      | 53       | (42,63)  | 765           | 90      | (87,92)  |  |  |
|           | IIIf. Unspecified     | 488  | 1.5   | 411     | 1.2      | 418      | 72       | (37,47)  | 329           | 68      | (63,73)  |  |  |
|           | British Isles         | 2133 | 26.0  | 398     | 4.8      | 2094     | 59       | (57,61)  | 369           | 86      | (82,90)  |  |  |
|           | East                  | 1465 | 28.1  | 191     | 3.5      | 1403     | 52       | (49,55)  | 185           | 68      | (60,76)  |  |  |
|           | North                 | 561  | 37.6  | 173     | 6.2      | 1001     | 69       | (66,72)  | 166           | 87      | (80,91)  |  |  |
|           | South                 | 659  | 27.4  | 91      | 3.6      | 640      | 65       | (61,69)  | 91            | 85      | (76,91)  |  |  |
|           | West                  | 3513 | 22.8  | 645     | 4.1      | 2749     | 63       | (61,65)  | 475           | 84      | (80,88)  |  |  |
| 1978–1982 |                       | 2380 | 22.0  | 425     | 3.9      | 2187     | 51       | (49,53)  | 387           | 64      | (59,68)  |  |  |
| 1983-1987 |                       | 3628 | 23.6  | 630     | 4.0      | 3446     | 57       | (55,59)  | 587           | 76      | (73,80)  |  |  |
| 1988–1992 |                       | 3884 | 25.3  | 635     | 4.1      | 3458     | 61       | (59,63)  | 553           | 84      | (80,67)  |  |  |
| 1993–1997 |                       | 3519 | 25.9  | 670     | 4.8      | 3017     | 61       | (62,66)  | 539           | 86      | (82,89)  |  |  |

n: Number of cases; ASR: Age-standardised incidence rates; (95% CI): confidence interval; TOTAL: Includes data from East Germany, which is not included in any of the regions; MV(%): Microscopically verified cases.

Table 5 – Incidence and survival of the main tumour types in the subgroup IIIe Other specified tumours in Europe, 1988–1997 (Source: ACCIS)

|                            | n   | ASR  | MV % |                                  | Behaviour |    | •   | Survival |          |  |
|----------------------------|-----|------|------|----------------------------------|-----------|----|-----|----------|----------|--|
|                            |     |      |      | Benign % Uncertain % Malignant % |           |    |     | 5-year % | (95% CI) |  |
| Craniopharyngioma          | 493 | 1.4  | 92   | 0                                | 100       | 0  | 433 | 90       | (86,93)  |  |
| Ganglioglioma              | 186 | 0.5  | 97   | 1                                | 97        | 2  | 160 | 91       | (84,95)  |  |
| Meningioma                 | 147 | 0.4  | 97   | 71                               | 5         | 24 | 134 | 85       | (77,90)  |  |
| Pineal parenchymal tumours | 127 | 0.4  | 91   | 0                                | 43        | 57 | 115 | 59       | (48,67)  |  |
| Pituitary adenoma          | 28  | 0.07 | 96   | 93                               | 0         | 7  | 27  | 96       | (74,99)  |  |

Only the registries with systematic collection of non-malignant tumours are included.


n: Number of cases; ASR: Age-standardised incidence rates; MV(%): Microscopically verified cases; (95% CI): confidence interval.

exactly to those obtained for the malignant tumours in the restricted data-set (Table 4). Survival of patients with non-malignant tumours was markedly more favourable (Tables 4 and 5, and Fig. 6).

Variations were observed among diagnostic groups, with the highest survival in the group of other specified tumours, and lowest in the group of PNET. However, survival within the diagnostic subgroups varied according to the geographical region of residence. To examine the geographical variation in detail, a pooled 5-year survival for those regions where survival did not differ significantly was calculated. For ependymoma survival in the East (48%, 95% CI 40–57) differed from that in the other four regions, where pooled estimate of 5-year survival was 59% (95% CI 56–63). Similar pattern was observed for astrocytoma with the pooled estimate of 5-year survival for the non-East regions of 76% (95% CI 74–77), while in the East was 69% (95% CI 65–73). Children with PNET had

lower survival in the British Isles or East (43% (95% CI 39–46)) than in the other three regions (53%, (95% CI 50–56)). For other gliomas three ranks were determined, with highest survival in the North and South (76% (95% CI 71–80)), intermediate in the West and East (52% (95% CI 47–57)) and the lowest in the British Isles. Also for the whole group of 'glioma-related tumours', statistically significant differences were observed among regions, ranking North first, followed by South and West (pooled 5-year survival 70% (95% CI 68–72)) and finally the British Isles and the East (65%, (95% CI 63–67). In the diagnostic subgroup of other specified CNS tumours, survival was higher in the non-East regions than in the East (Table 6). Finally, for the group of unspecified, 5-year survival was 69% (95% CI 64–74) in the North and the British Isles, 46% (95% CI 40–52) in the South and West, and 26% in the East.

In Europe, survival of children with CNS tumours increased with age (test for trend by age group  $\chi^2 = 118.69$ ,



PNET: IIIc. Primitive neuroectodermal tumours; Others pecified: IIIe. Other specified intracranial and intraspinal neoplasms; Unspecified: IIIf. Unspecified intracranial and intraspinal neoplasms.

Fig. 2 – Age-specific incidence rates of central nervous system (CNS) tumours in children (0–14 years) in Europe, 1988–1997, by diagnostic group (n = 11,829). Source: ACCIS.

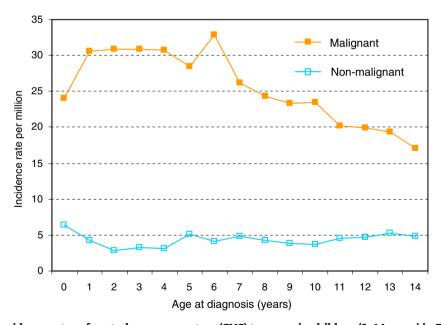
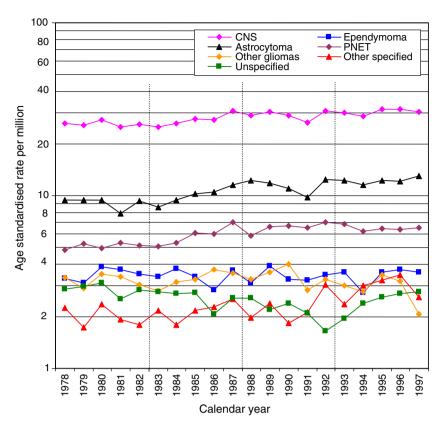




Fig. 3 – Age-specific incidence rates of central nervous system (CNS) tumours in children (0–14 years) in Europe, 1988–1997, by behaviour of tumour. Only the registries with systematic registration of non-malignant tumours are included (n = 10,284). Source: ACCIS.

P < 0.0001). A similar pattern was observed for the diagnostic subgroups, except for astrocytoma, and other gliomas (Table 6). No differences between East and non-East regions were found for infants. Differences in survival by sex were not observed, except for other gliomas (P = 0.03), with better survival in boys (5-year survival 60%, 95% CI 56–64) than in girls (53%, 95% CI 49–57).

After excluding 1269 cases with follow-up shorter than 1 day, 15,415 cases were included in the time trends analyses

of survival. For the combined group of CNS tumours, 5-year survival rates increased by 29% in Europe between 1978–1982 and 1993–1997, from 52% to 67%. Survival improved for both malignant and non-malignant tumours (Fig. 6). The 5-year survival increased by 20% for malignant and by 34% for the non-malignant tumours, when comparing the first and the last 5-year periods. Increases were present in each of the regions, although the trend was not statistically significant for the East and the West (Table 7).



CNS: All central nervous system tumours combined (Group III. CNS and miscellaneous intracranial and intraspinal neoplasms) (ICCC)<sup>13</sup>; PNET: IIIc. Primitive neuroectodermal tumours; Other specified: IIIe. Other specified intracranial and intraspinal neoplasms; Unspecified: IIIf. Unspecified intracranial and intraspinal neoplasms.

Fig. 4 – Trends of the incidence of central nervous system (CNS) tumours in children (0–14 years) in Europe, 1978–1997, by diagnostic group (n = 17,057). Age-standardised rates (ASR), World standard population. Source: ACCIS.

In Europe as a whole, the increase in 5-year survival was observed in all diagnostic subgroups, although its extent was not homogeneous. Survival for ependymoma and PNET increased by more than 40%, for astrocytoma and other specified CNS tumours by around 20%, and for other gliomas by 29%. Survival rates levelled off, or even decreased in some regions, for some diagnostic groups or for all the CNS tumours combined between the last two 5-year periods (Table 7). In the British Isles, the increasing trend of survival was significant for all diagnostic groups, while in the other regions, the results were more heterogeneous (Table 7).


A statistically significant increase in survival was present in all age groups for all CNS tumours combined. However, except for astrocytomas and PNET, lack of improvement was observed in infants for other diagnostic subgroups. The increase in survival was not regular across the whole time period and some combinations of age and diagnostic group showed lower survival rates in the last 5-year period 1993–1997 than in the preceding one, 1988–1992 (data not shown).

# 4. Discussion

The present study is the largest report on incidence and survival of children with CNS tumours in Europe. The results are based on comparable data from 59 population-based can-

cer registries with high standards of main indicators of data quality. Despite rigorous data verification and careful evaluation of the comparability of the data-sets, it was not possible to account for all differences in diagnostic, registration and coding practices, specific to CNS tumours, which may have affected the results presented in this paper.

The location of the CNS tumours presents extra difficulty for diagnosis, due to reduced accessibility to the tumour and increased vulnerability of the affected tissues. It is not surprising to find large variations in pathological interpretation and diagnostic practices, 14 often depending on the technical equipment available. Imprecise limits between benign and malignant behaviour in some CNS neoplasms, opens the way for variable determination of diagnosis, which might be not repeatable due to the lack of biopsied specimen. Uncertainty in behaviour classification is also reflected in the changes in recommendations for coding. For example, pilocytic astrocytoma (M-9421), coded malignant in the first edition of the International Classification for Oncology (ICD-O-1)<sup>15</sup> is considered of uncertain behaviour in the ICD-O-3.16 In the opposite direction, papillary ependymoma (M-9393), coded uncertain in ICD-O-1, receives malignant behaviour code in the ICD-O-3. It is therefore difficult to ensure complete registration of CNS tumours by the registries only collecting malignant cases. Clinical implications, comparable between the



West region, malignant tumours, year 1980 ASR=0; non-malignant, years 1979, 1980 and 1982 ASR=0; East region, malignant tumours, year 1979 ASR=0.849.

Fig. 5 – Trends of the incidence of central nervous system (CNS) tumours in children (0–14 years) in Europe, 1978–1997, by behaviour and region. Only the registries with systematic registration of non-malignant tumours are included (n = 15,771). Age-standardised rates (ASR), World standard population. Source: ACCIS.

malignant and non-malignant CNS tumours, are another valid reason for collecting information on non-malignant CNS tumours, as recommended by the European Network of Cancer Registries (ENCR). Among the registries included in this study, non-malignant CNS tumours were collected systematically in a large proportion of the covered population. This proportion is currently increasing, as more registries start to collect information systematically on non-malignant tumours. While the inclusion of non-malignant tumours may increase the incidence of CNS tumours up to 22% in the USA, 18 in our study this proportion was 15%.

The incidence rates observed in the European pool are similar to those previously described for North America and Europe. <sup>1,6</sup> In the SEER data, the ASR (world standard) for malignant CNS tumours in children was 32.4 per million, <sup>19</sup> which is higher than the European ASR of 26 per million for malignant tumours only. Only the North region had higher rates (ASR = 37.6). Indeed, ASR for CNS were 40% higher in the North than in any other European region and highest observed in the world since the 1970s. <sup>1,2</sup>

Although the rate in the North seemed to be inflated due to the disproportionate relative frequency of the subgroups of other gliomas and unspecified CNS tumours, the distribution of the excess of incidence among the diagnostic groups only reflects the use of outdated classification systems in the Nordic countries until recently. For example, the Finnish cancer registry used the Manual of Tumor Nomenclature and Coding (MOTNAC) coding, where all gliomas, except ependymomas, are included in a single group, 20 which does not allow re-classifying of these tumours to ICD-O system retrospec-

tively. All astrocytomas are therefore included among other gliomas. When Finland was excluded from the data-set, the proportion of the individual subgroups became more similar to those in other regions, while the overall rates for the North did not change substantially and continued to be higher than in any other region. The constitution of the compound group 'glioma-related tumours', combining ependymoma, astrocytoma and other gliomas in a single group therefore helped to counteract the differences in classification systems described above.

A high percentage of microscopically verified diagnoses, and the high proportion of non-malignant tumours observed in the North may indicate an increased use of computerised tomography (CT), magnetic resonance imaging (MRI) and stereotactic biopsy, 21,22 but possibly also variations between the North and other regions in the coding practices of tumours without microscopic verification. The high rates of CNS tumours in children in the North of Europe may also result, at least in part, from widespread use of advanced diagnostic technology and the good access to specialised medical care. 22,23 It should be possible to evaluate formally whether variations of incidence could have been caused by the differences in access to diagnostic technology. To do this, information on the use and accessibility of CT and MRI and on the implementation and availability of specialised oncology units for children needs to be collected.

The low rates observed in the West might be explained mainly by the low rates in Germany alone (overall ASR = 26 per million with 95% CI 25–27), since this country represented 69% of person-years in this region in the period 1988–1997.

Table 6 – Number of children (age 0–14 years) with central nervous system (CNS) tumours included in the survival analyses and 5-year survival, Europe, 1988–1997, by diagnostic group, region and age (Source: ACCIS)

| ,                         | n          | , , ,                   |                          | Survival                 | <u> </u>                 |                          |
|---------------------------|------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|                           |            | Age 0                   | Age 1–4                  | Age 5–9                  | Age 10–14                | All ages                 |
|                           |            | 5-y (95% CI)            | 5-y (95% CI)             | 5-y (95% CI)             | 5-y (95% CI)             | 5-y (95% CI)             |
| EUROPE                    |            |                         |                          |                          |                          |                          |
| III. CNS                  | 10532      | 48 (44,52)              | 61 (59,63)               | 64 (62,65)               | 70 (68,72)               | 64 (63,65)               |
| IIIa. Ependymoma          | 1112       | 48 (39,56)              | 49 (44,53)               | 67 (61,73)               | 76 (68,81)               | 58 (55,61)               |
| IIIb. Astrocytoma         | 4215       | 61 (53,68)              | 80 (78,82)               | 73 (71,76)               | 72 (70,75)               | 75 (73,76)               |
| IIIc. PNET                | 2296       | 27 (20,35)              | 41 (37,44)               | 53 (49,56)               | 59 (54,63)               | 49 (47,51)               |
| IIId. Other gliomas       | 1134       | 71 (56,82)              | 61 (55,66)               | 50 (45,54)               | 60 (54,65)               | 57 (54,60)               |
| IIIe. Other Specified     | 900        | 57 (40,71)              | 79 (71,85)               | 88 (83,91)               | 87 (83,91)               | 84 (82,87)               |
| IIIf. Unspecified         | 875        | 40 (29,50)              | 41 (35,47)               | 48 (42,54)               | 69 (62,74)               | 51 (47,54)               |
| IIIa + b + d              | 6461       | 57 (52,62)              | 69 (67,72)               | 68 (66,70)               | 70 (68,72)               | 68 (67,70)               |
| REGIONS<br>III. CNS       |            |                         |                          |                          |                          |                          |
| British Isles             | 2720       | 49 (41,56)              | 60 (56,63)               | 62 (59,65)               | 71 (67,74)               | 63 (61,65)               |
| East                      | 1696       | 34 (22,46)              | 47 (43,52)               | 54 (49,58)               | 61 (56,65)               | 53 (51,56)               |
| North                     | 1167       | 49 (38,60)              | 68 (63,73)               | 74 (69,78)               | 78 (73,82)               | 72 (69,74)               |
| South                     | 1022       | 50 (33,65)              | 63 (57,68)               | 65 (60,70)               | 72 (67,77)               | 66 (63,69)               |
| West                      | 3927       | 52 (45,58)              | 64 (61,67)               | 66 (63,68)               | 70 (67,73)               | 65 (64,67)               |
| Logrank (p)               | 332.       | ns                      | 0.0000                   | 0.0000                   | 0.0000                   | 0.0000                   |
| Non-East <sup>a</sup>     | 8836       | 50 (46,54)              | 63 (61,65)               | 66 (64,67)               | 72 (70,74)               | 66 (65,67)               |
|                           |            | ( ,, ,                  | ( , , , , ,              | ,,,,                     | ( , ,                    | (**,**)                  |
| IIIa + b + d              |            |                         |                          |                          |                          |                          |
| British Isles             | 1788       | 58 (48,66)              | 67 (63,71)               | 63 (59,66)               | 69 (64,72)               | 65 (63,67)               |
| East                      | 946        | 42 (22,61)              | 58 (52,64)               | 66 (60,71)               | 68 (62,74)               | 64 (60,67)               |
| North                     | 698        | 60 (41,74)              | 75 (68,80)               | 74 (68,80)               | 81 (74,86)               | 76 (72,79)               |
| South                     | 618        | 52 (33,68)              | 75 (68,81)               | 73 (65,79)               | 72 (66,78)               | 72 (68,76)               |
| West                      | 2411       | 61 (52,68)              | 72 (69,76)               | 70 (66,73)               | 67 (63,71)               | 69 (67,71)               |
| Logrank, five regions (p) | FF4F       | ns                      | 0.0000                   | 0.0010                   | 0.0297                   | 0.0000                   |
| Non-East <sup>a</sup>     | 5515       | 59 (53,64)              | 71 (69,73)               | 68 (66,70)               | 71 (68,73)               | 69 (68,70)               |
| IIIc. PNET                |            |                         |                          |                          |                          |                          |
| British Isles             | 552        | 27 (14,41)              | 33 (26,40)               | 51 (44,58)               | 55 (45,63)               | 44 (40,48)               |
| East                      | 371        | 36 (13,59)              | 35 (25,44)               | 42 (34,49)               | 46 (34,57)               | 40 (35,45)               |
| North                     | 173        | 6 (0.4,25)              | 43 (30,55)               | 71 (57,81)               | 55 (35,71)               | 52 (43,59)               |
| South                     | 206        | #                       | 44 (31,55)               | 61 (49,71)               | 61 (47,72)               | 55 (48,62)               |
| West                      | 994        | 32 (20,45)              | 46 (40,52)               | 55 (49,60)               | 67 (60,74)               | 53 (50,56)               |
| Logrank, five regions (p) |            | ns                      | 0.035                    | 0.0002                   | ns                       | 0.0001                   |
| Non-East <sup>a</sup>     | 1925       | 26 (18,35)              | 42 (38,46)               | 56 (52,59)               | 61 (56,66)               | 50 (48,53)               |
| IIIe. Other Specified     |            |                         |                          |                          |                          |                          |
| British Isles             | 224        | 53 (26,74)              | 85 (70,93)               | 88 (78,94)               | 92 (84,96)               | 87 (82,91)               |
| East                      | 169        | #                       | 60 (36,78)               | 72 (57,82)               | 69 (54,80)               | 68 (59,75)               |
| North                     | 104        | #                       | 83 (60,93)               | 91 (74,97)               | 85 (68,94)               | 83 (74,89)               |
| South                     | 74         | #                       | 70 (33,89)               | 84 (62,94)               | 91 (75,97)               | 86 (75,92)               |
| West                      | 329        | 74 (44,89)              | 80 (64,89)               | 95 (88,98)               | 92 (84,96)               | 90 (85,93)               |
| Logrank, five regions (p) |            | ns                      | ns                       | 0.0002                   | 0.0004                   | 0.0000                   |
| Non-East <sup>a</sup>     | 731        | 60 (42,74)              | 82 (74,88)               | 91 (86,94)               | 91 (87,94)               | 88 (85,90)               |
| IIIf. Unspecified         |            |                         |                          |                          |                          |                          |
| British Isles             | 156        | 12 (22 62)              | 47 (21 62)               | 72 (56 02)               | 05 (93 00)               | 69 (60 75)               |
| East                      | 156<br>210 | 43 (22,63)<br>23 (7,44) | 47 (31,62)<br>20 (11,31) | 72 (56,83)<br>24 (14,35) | 95 (83,99)<br>37 (24,50) | 68 (60,75)<br>26 (20,32) |
| North                     |            |                         |                          |                          |                          |                          |
| South                     | 192<br>124 | 65 (42,81)<br>#         | 64 (48,76)<br>39 (23 54) | 68 (56,78)<br>33 (20.46) | 79 (63,89)<br>72 (54,84) | 69 (62,76)<br>46 (37.54) |
| West                      | 193        | #<br>17 (3,43)          | 39 (23,54)<br>43 (29,56) | 33 (20,46)<br>44 (31,56) | 72 (54,84)<br>65 (49,77) | 46 (37,54)<br>46 (39,54) |
| Logrank, five regions (p) | 100        | ns                      | 0.0000                   | 0.0000                   | 0.0000                   | 0.0000                   |
| Non-East <sup>a</sup>     | 665        | 45 (32,57)              | 49 (41,56)               | 55 (48,61)               | 78 (71,84)               | 58 (54,62)               |
| 1.011 Buot                | 003        | 15 (52,57)              | 15 (11,50)               | 33 (10,01)               | , 5 (, 1,01)             | 30 (31,02)               |

5-y: 5-year survival; n: Number of cases; (95%CI): confidence interval; ns:  $P \ge 0.05$ ; Italics small bold types:  $10 \ge n$  cases < 25; #: Number of cases n < 10; CNS: CNS: All central nervous system tumours combined. (Group III. CNS and miscellaneous intracranial and intraspinal neoplasms) (ICCC)<sup>13</sup>; IIIa + b + d: Glioma-related (IIIa Ependymoma, IIIb Astrocytoma, IIId Other gliomas); PNET: IIIc. Primitive neuroectodermal tumours; Other specified: IIIe. Other specified intracranial and intraspinal neoplasms; Unspecified: IIIf. Unspecified intracranial and intraspinal neoplasms.

a Non-East = Brit Isl + North + South + West.

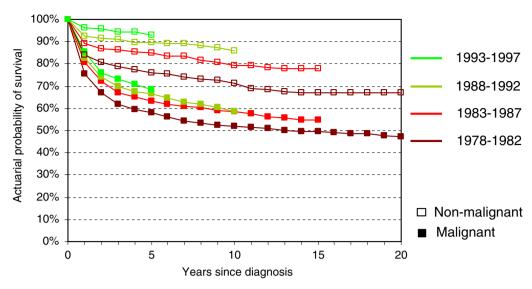



Fig. 6 – Survival curves for children (0–14 years) with central nervous system (CNS) tumours in Europe, by behaviour of tumour and period diagnosis (1978–1997). Only the registries with systematic registration of non-malignant tumours are included (n = 14,174). Source: ACCIS.

This low incidence has been explained by under-reporting of CNS tumours in Germany in the 1980s and 1990s.<sup>24</sup> The under-registration concerns probably mainly the subgroups of other gliomas and unspecified CNS tumours, since incidence of astrocytomas was close to the regional average. The German incidence rates of PNET did not differ from those in other countries of the region, since the children with PNET tend to be entered on clinical trials and treated by paediatric oncologists, who are the main contributors to the German Childhood Cancer Registry.<sup>24</sup> With Germany excluded, the overall incidence rate was consistent with European average, 29 per million (95% CI 28–31).

Although it was not significantly different from the reference, the incidence of CNS tumours in the East was the second highest, while overall incidence rates in this region were relatively low [Stiller, Marcos-Gragera, Ardanaz and colleagues, this issue]. It is unlikely that the high incidence of CNS tumours is conditioned by the registration of non-malignant tumours or the extensive use of advanced diagnostic technologies, because the proportion of non-malignant tumours in the East was low. The low survival observed in this region may indicate that the cases present at a later stage, but possibly also lack of access to best practice management of children with CNS tumours.

The time period 1978–1997, used for time trend analyses, was not well balanced with respect to the numbers of cases contributing to each of the 5-year periods, notably the lack of cases in the West at the beginning and in the British Isles at the end of the study period. These were the two numerically largest regions, which weighted the European trends considerably. It is difficult to estimate the direction of possible bias and its extent. However, the time trends of overall incidence rates did not seem to be affected much by the lack of data at the two ends of the study period [Steliarova-Foucher, Kaatsch, Lacour and colleagues, this issue]. Also within the group of CNS tumours, exclusion of the regions with extreme incidence rates North (high) and West (low) did not alter

much the increase in incidence (AAPC = 2.1, P < 0.0001). On the whole, therefore, the choice of registries included in time trends analyses did not seem to be the cause of the detected increase. Rising incidence rates of CNS tumours were also reported previously.<sup>23,25–27</sup> Trends observed in North America in the population covered by the SEER Program have been explained as a step increase function ('jump model'), which would correspond mainly to the diffusion of MRI in the mid-1980s. This explanation is supported by the detection of main increases in the tumour types predominantly diagnosed by this technique. 21,25,28 Rising trends of childhood CNS tumours in Sweden have been explained similarly.<sup>23</sup> The secular changes of incidence observed for CNS tumours in Europe in Fig. 4 may resemble those described for the SEER data, although the nature of this step increase could not be mirrored exactly in the European data, since the use of diagnostic technology would probably not be applied in the same way across the heterogeneous healthcare systems in Europe, compared with those in the USA.

Our results show increases in astrocytomas, PNET and other specified CNS tumours, but not in other gliomas or ependymomas. Both astrocytomas and PNET roughly parallel the launch of use of MRI, whereas in other specified CNS tumours rates begun to rise later, during the 1990s. These increases may be explained, at least in part, by diagnostic improvements, which besides incrementing the number of diagnosed cases contributed to the improvement of classification, especially of gliomas and, simultaneously, to a reduction of the unspecified CNS tumours. The change in classification of CNS tumours, which reduced the proportion of low-grade gliomas by classifying them to higher grades in the middle of 1980s,<sup>28</sup> and the gradual introduction of registration of non-malignant tumours along the period studied, may have also contributed to the increase in incidence, particularly in the group of other specified tumours. On the other hand, we have shown that the increases were similar for the malignant and non-malignant CNS tumours. We cannot therefore

Table 7 – Number of children (age 0–14 years) with central nervous system (CNS) tumours included in the survival analyses and 5-year survival time trends, Europe, 1978–1997, by region and diagnostic group (Source: ACCIS)

|                         | n           |                          | Sur                      | vival                    |                          | Log rank trend |
|-------------------------|-------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------|
|                         |             | 1978–82<br>5-y (95% CI)  | 1983–87<br>5-y (95% CI)  | 1988–92<br>5-y (95% CI)  | 1993–97<br>5-y (95% CI)  | P value        |
| III CNS                 |             |                          |                          |                          |                          |                |
| EUROPE                  | 15415       | 52 (51,54)               | 59 (58,61)               | 63 (62,65)               | 67 (65,69)               | 0.0000         |
| British Isles           | 5283        | 49 (47,52)               | 57 (54,60)               | 59 (56,61)               | 69 (66,72)               | 0.0000         |
| East                    | 1949        | 52 (48,56)               | 52 (49,56)               | 54 (49,58)               | 56 (50,61)               | ns             |
| North                   | 2125        | 61 (56,65)               | 67 (63,71)               | 73 (69,76)               | 70 (66,74)               | 0.0001         |
| South                   | 1011        | 51 (44,57)               | 59 (53,65)               | 69 (63,74)               | 67 (60,73)               | 0.0000         |
| West                    | 4189        | 61 (50,71)               | 64 (61,66)               | 67 (64,69)               | 67 (64,70)               | ns             |
| IIIa Ependymom          | ıa          |                          |                          |                          |                          |                |
| EUROPE                  | 1741        | 45 (40,50)               | 52 (47,56)               | 54 (49,59)               | 64 (58,69)               | 0.0000         |
| British Isles           | 560         | 35 (28,43)               | 52 (44,60)               | 48 (39,55)               | 72 (63,79)               | 0.0000         |
| East                    | 249         | 51 (41,60)               | 43 (34,51)               | 41 (28,54)               | 50 (34,64)               | ns             |
| North                   | 200         | 60 (45,72)               | 61 (44,74)               | 64 (48,76)               | 56 (37,71)               | ns             |
| South                   | 132         | 47 (28,63)               | 50 (31,66)               | 59 (41,73)               | 63 (44,78)               | ns             |
| West                    | 460         | 50 (18,75)               | 58 (49,66)               | 60 (52,67)               | 67 (57,76)               | ns             |
|                         |             | 30 (10,73)               | 30 (13,00)               | 00 (32,07)               | 07 (37,70)               | 110            |
| IIIb Astrocytoma EUROPE | 1<br>5994   | 64 (61,67)               | 71 (69,73)               | 74 (72,76)               | 76 (73,78)               | 0.0000         |
| British Isles           | 2194        | , , ,                    | 71 (67,75)               | • • •                    | , , ,                    | 0.0000         |
|                         |             | 65 (61,69)               | ` ' '                    | 71 (67,74)               | 78 (74,81)               |                |
| East                    | 775         | 61 (55,67)               | 65 (59,69)               | 68 (60,74)               | 69 (60,76)               | ns             |
| North                   | 564         | 69 (60,76)               | 73 (64,80)               | 85 (78,89)               | 71 (63,78)               | ns             |
| South<br>West           | 413<br>1671 | 60 (49,70)<br>69 (50,82) | 68 (59,75)<br>76 (71,80) | 76 (67,83)<br>76 (72,79) | 72 (62,80)<br>77 (73,81) | 0.02           |
|                         | 10/1        | 69 (30,62)               | 76 (71,80)               | 76 (72,79)               | // (/3,61)               | ns             |
| IIIc PNET               |             | /                        |                          |                          | /                        |                |
| EUROPE                  | 3271        | 37 (33,41)               | 44 (40,47)               | 48 (44,51)               | 52 (48,56)               | 0.0000         |
| British Isles           | 1125        | 37 (31,42)               | 44 (39,50)               | 41 (36,46)               | 50 (43,57)               | 0.0016         |
| East                    | 436         | 30 (22,38)               | 24 (18,31)               | 39 (30,48)               | 46 (35,55)               | ns             |
| North                   | 299         | 36 (24,48)               | 50 (38,61)               | 46 (36,56)               | 57 (43,69)               | ns             |
| South                   | 182         | 52 (36,66)               | 54 (39,67)               | 67 (52,78)               | 52 (34,68)               | ns             |
| West                    | 1086        | 57 (25,79)               | 51 (45,57)               | 53 (48,58)               | 55 (48,61)               | ns             |
| IIId Other gliom        |             |                          |                          |                          |                          |                |
| EUROPE                  | 1836        | 45 (40,50)               | 53 (48,57)               | 54 (50,59)               | 58 (53,63)               | 0.0000         |
| British Isles           | 699         | 30 (24,37)               | 32 (26,39)               | 37 (31,44)               | 46 (36,55)               | 0.0006         |
| East                    | 181         | 44 (28,59)               | 47 (32,61)               | 46 (28,62)               | 54 (37,69)               | ns             |
| North                   | 523         | 65 (56,73)               | 79 (70,85)               | 77 (69,83)               | 78 (69,85)               | 0.031          |
| South                   | 65          | #                        | 56 (35,73)               | 74 (48,88)               | 67 (34,86)               | ns             |
| West                    | 344         | #                        | 61 (51,70)               | 54 (45,63)               | 44 (29,59)               | ns             |
| IIIe Other Specif       | ied         |                          |                          |                          |                          |                |
| EUROPE                  | 1349        | 71 (65,76)               | 81 (76,84)               | 88 (84,91)               | 86 (81,89)               | 0.0000         |
| British Isles           | 459         | 68 (59,75)               | 76 (67,83)               | 86 (78,91)               | 87 (79,92)               | 0.0000         |
| East                    | 170         | 69 (55,80)               | 78 (67,86)               | 80 (64,90)               | 68 (45,84)               | ns             |
| North                   | 187         | 78 (63,87)               | 87 (71,94)               | 88 (74,94)               | 81 (67,89)               | ns             |
| South                   | 65          | #                        | 95 (72,99)               | 83 (48,96)               | 95 (68,99)               | ns             |
| West                    | 384         | #                        | 83 (74,90)               | 94 (88,97)               | 90 (80,95)               | ns             |
| IIIf Unspecified        |             |                          |                          |                          |                          |                |
| EUROPE                  | 1224        | 43 (37,49)               | 47 (41,52)               | 59 (53,64)               | 61 (55,67)               | 0.0000         |
| British Isles           | 242         | 37 (25,48)               | 44 (30,56)               | 68 (56,78)               | 73 (58,83)               | 0.0000         |
| East                    | 138         | 51 (38,63)               | 63 (52,72)               | 32 (15,50)               | 19 (6,39)                | ns             |
| North                   | 352         | 50 (39,60)               | 49 (37,59)               | 69 (57,78)               | 70 (61,78)               | 0.0009         |
| South                   | 154         | · · · · · ·              |                          |                          |                          |                |
|                         |             | 35 (23,47)               | 33 (20,46)               | 52 (33,68)               | 55 (32,72)               | ns<br>0.010E   |
| West                    | 244         | 27 (7,54)                | 36 (26,47)               | 53 (40,63)               | 48 (31,63)               | 0.0195         |

5-y: 5-year survival; n: Number of cases; (95%CI): confidence interval; ns:  $P \ge 0.05$ ; Italics small bold types:  $10 \ge n$  cases < 25; #: Number of cases n < 10; CNS: CNS: All central nervous system tumours combined. (Group III CNS and miscellaneous intracranial and intraspinal neoplasms) (ICCC)<sup>13</sup>; PNET: IIIc. Primitive neuroectodermal tumours; Other specified: IIIe. Other specified intracranial and intraspinal neoplasms; Unspecified: IIIf. Unspecified intracranial and intraspinal neoplasms.

exclude the participation of environmental and other risk factors, <sup>26,27</sup> and further studies are justified.

Survival of children with CNS tumours improved across the period 1978-1997, in all diagnostic subgroups. The least improvement along time was seen in infants and in the East and West regions. Consistent results were reported from different countries<sup>29,30</sup> for the 1980s. In the European studies including the late 1990s, an increase in 5-year survival of children with CNS tumours has been reported, but survival rates levelled off or even decreased towards the end of the study period, 31,32 as seen also in the present study in some tumour subgroups and some regions. This lack of progress in the last part of the study period justifies further attentive monitoring of these trends. The improvement in survival may be attributed mainly to better access to healthcare, resulting in earlier diagnosis, more recruitment to standardised treatment protocols, participation in collaborative groups, better supportive care, establishment of paediatric units, but also to general improvement of socio-economic conditions over the study period.33-36

In spite of the increments in survival for childhood CNS tumours reported in this and other studies, <sup>6-8,32,37</sup> inequalities in prognosis persist among geographical areas in Europe. <sup>37</sup> Age at diagnosis, histology, anatomic site, extent of the tumour and type of treatment have been described as the most relevant predictors of survival. <sup>11</sup> While availability of effective therapies is essential, access to medical care, which is generally related to economic and cultural factors, <sup>38</sup> modifies strongly the effectiveness of care. Later diagnosis may be one of the reasons for the markedly lower survival of children with CNS tumours in the East. The factors possibly contributing to the lower overall survival in the East are discussed in detail elsewhere [Pritchard-Jones and Colleagues, this issue].

The significant difference in survival, observed among the other regions, may be explained partly, but not entirely, by the differences in diagnostic and registration practices of CNS tumours. For example, the North region had the highest percentage of non-malignant tumours, but the high survival was observed for both malignant and non-malignant tumours. Beyond the proportion of non-malignant tumours in each data-set, the rules of pathological classification of tumours as malignant or non-malignant may also affect survival rates, without offering a possibility of evaluation of the effect of such differential classification from routine registration data.

Surgery is, in general, the first step in treatment, both to establish the microscopic diagnosis and, if possible, to remove the tumour for a curative purpose. With the extensive use of CT and MRI, the tumours are diagnosed at earlier stage, permitting their complete removal, and better survival. Histology is a well-recognised prognostic factor for CNS tumours 1,11,24,29,30,37 and this is reflected in the differences in survival by diagnostic subgroup. The low survival for PNET and the high survival for astrocytoma is mostly related to the different possibilities of earlier diagnosis and start of treatment. Large variations among the regions were seen in the proportion of microscopically verified tumours. The tumours diagnosed only clinically correspond, at least in part, to unresected tumours, which could have been allocated to a more specific diagnostic subgroup, if histology were avail-

able. The variable proportion of these cases in different regions may have biased the comparison of survival for the individual diagnostic subgroups. For the overall CNS group, this concern applies mainly to the British Isles and the West. In the former, the proportion of microscopically diagnosed cases was lower than in other regions, which might have resulted in less specific diagnoses, less well tailored treatment and lower survival. In the West, with high proportion of microscopic verification (probably due to under-ascertainment of the less well defined CNS tumours), the effect would be the opposite.

On the other hand, we do not have enough information to be able to exclude other explanations for geographical variations in survival, such as more or less successful management of CNS tumours in childhood in the relevant areas.

On the whole, this survival study is consistent with EURO-CARE-2 results. <sup>7</sup> In the USA, the 5-year survival for the patients diagnosed in 1986–1997 in SEER registration areas was 65%, only including malignant tumours. <sup>6</sup> This is slightly higher than the 5-year survival of 62%, 95% CI 61–63, observed in our restricted data-set for malignant tumours only in the same calendar period. With East excluded, the corresponding figures were 63%, 95% CI 62–64, and for North only they were 69%, 95% CI 66–72.

As in other reports,<sup>30</sup> survival improved with increasing age, and was poorest in infants. More aggressive histological subtypes, higher rates of disease dissemination at diagnosis, lower overall rate of complete tumour resection and problems related to the diagnosis and treatment in young children have been associated with these differences in survival. Delay of diagnosis contributes to the poor survival in infants, as at this age tumours may show only unspecific symptoms, making the diagnosis difficult, until the tumour reaches a large size. 11 This reasoning is supported by the observation of a high proportion of unspecified CNS tumours in infants in this study. This group of patients deserves special attention, since infants present, simultaneously, the highest incidence rate and the lowest survival among the diagnostic subgroups, with up to 50% of cases diagnosed only clinically. Although survival did not differ by the method of diagnosis (P = 0.5), this age group comprises perhaps the highest proportion of nonresected tumours, known for their poor prognosis. Due to the special nature of CNS tumours and the serious potential sequelae, principally related to radiotherapy, are usually treated with protocols avoiding or delaying radiotherapy in infants, 11 which might be the reason for the low survival of infants, especially those with PNET or ependymoma.<sup>39–41</sup>

This study showed high incidence rates in the North of Europe, and a general increase in the incidence of CNS tumours in children. These rates and trends could be explained by differences and improvements in diagnosis, ascertainment and practice of cancer registries. However, these artefacts do not account completely for the geographical and temporal differences observed and we cannot therefore exclude a role of variations in risk factors. Survival has improved in Europe, but geographical differences persist. Continuing data collection and improvement of data quality, including retrospectively, are indispensable to monitor future incidence and survival trends and to highlight differences among regions.

## **Conflict of interest statement**

None declared.

## Acknowledgements

The ACCIS project was funded by the European Commission from 'Europe Against Cancer' action program (1996–2002)\_(contracts SI2.126875, SI2.321970 and SPC.2002303), jointly with the International Agency for Research on Cancer (IARC). Data analyses were partly financed by the French Ligue Nationale Contre le Cancer, Comité du Rhône. In the RNTI-SEOP this study was partially supported by Fundación Científica AECC, ISCIII Network RITSI G03/089, Fundación Villavecchia and Fundación SEOP. In Granada Cancer Registry this study was in the framework ISCIII Network REPIER G03/123 and RCESP C03/09, Spain.

The authors thank Mr Nicolas Mitton for his input in the set-up and management and exploration of the ACCIS database, the members of ACCIS Scientific Committee for steering the study, the Guest Editors for helpful comments on earlier drafts and E. Pardo and A. García of the RNTI-SEOP; M.J Sánchez and E. Sánchez-Cantalejo of the Granada Cancer Registry; and Dr J.M. Cerdá for their help with manuscript preparation.

The following collaborators from the cancer registries contributed actively to this study: S.V. Petrovich, O. Budanov (Belarus); H. Storm, N. Christensen (Denmark); T. Aareleid (Estonia); T Hakulinen, R Sankila, E Pukkala (Finland); E Le Gall, I Tron (Brittany, France), B. Lacour, E. Desandes (Lorraine, France), J.L. Bernard, P. Pillon, J.C. Gentet (PACA and Corsica, France), F. Freycon, C. Berger (Rhone Alps, France), L. Remontet (Francim, France), A. Danzon, M. Mercier (Doubs, France), J.P. Daurès, B. Tretarre (Herault, France), F. Ménégoz (Isère, France), A.V. Guizard (Manche, France), M. Velten (Bas-Rhin, France), A. Buemi (Haut-Rhin, France), N. Raverdy (Somme, France), M. Sauvage, P. Grosclaude (Tarn, France); P. Kaatsch, B. Eisinger, R. Stabenow (Germany); D. Schuler, Z. Jakab, G. Borgulya (Hungary); L. Tryggvadottir, J.G. Jonasson, K. Bjarnadottir (Iceland); H. Comber, F. Dwane (Ireland); C. Magnani, G. Pastore (Piedmont, Italy), F. Pannelli, C. Pascucci (Marche, Italy), S. Ferretti (Ferrara, Italy), E. Conti, V. Ramazzotti, M.C. Cercato (Latina Province, Italy), M. Vercelli, A. Puppo (Liguria, Italy), P. Crosignani, G. Tagliabue, A. Tittarelli (Lombardy, Italy), V. De Lisi, P. Sgargi (Parma, Italy), R. Tumino (Ragusa, Italy), M. Budroni, D. Piras (Sassari, Italy), E. Paci, E. Crocetti (Tuscany, Italy), F. La Rosa, F. Stracci (Umbria, Italy), P. Zambon, S. Guzzinati (Veneto, Italy); M. Dalmas (Malta); J. Paulides, J.W.W. Coebergh, J. van Dijck, A. Wit (Netherlands); F. Langmark, A. Johansen, A. Andersen (Norway); I. Plesko (Slovakia); M. Primic Žakelj, V. Pompe-Kirn (Slovenia); R. Peris-Bonet, B. Giner (Spain), E. Almar Marques, A. Mateos Ramos (Albacete, Spain), J. Ramon Quiros Garcia, A. Cañada Martínez (Asturias, Spain), I. Izarzugaza (Basque, Spain), A. Alemán Herrera (Canary Islands, Spain), P. Viladiu, R. Marcos, A. Izquierdo (Girona, Spain), C. Martínez Garcia (Granada, Spain), A. Obrador, I. Garau (Mallorca, Spain), E. Ardanaz (Navarra, Spain), J. Borràs, J. Galceran (Tarragona, Spain), J. de la Bárcena Guallar, M.C. Martos Jiménez (Zaragoza, Spain); G. Jundt (Basel, Switzerland), C. Bouchardy, M. Usel (Geneva, Switzerland), J. Allemann, H. Frick (Graubünden and Glarus, Switzerland), T. Fisch, S. Ess (St Gallen Appenzell, Switzerland), F. Joris, D. de Weck (Valais, Switzerland); S. Yalcin Eser (Izmir, Turkey); C.A. Stiller, M.G.F. Murphy, G.J. Draper (England and Wales, UK), A. Gavin, C. Fox, W. Hamill, R. Middleton (Northern Ireland, UK), D. Brewster, L. Bhatti, A. McDonald (Scotland, UK). We also acknowledge the collaborators from the other registries participating in ACCIS, whose data were not included in this paper.

#### REFERENCES

- Parkin DM, Kramárová E, Draper GJ, et al., editors.
   International Incidence of childhood cancer, vol.

   II. Lyon: International Agency for Research on Cancer; 1998.
- 2. Stiller CA, Nectoux J. International incidence of childhood brain and spinal tumours. Int J Epidemiol 1994;23:458–64.
- 3. McKinney PA, Feltbower RG, Parslow RC, Lewis IJ, Glaser AW, Kinsey SE. Patterns of childhood cancer by ethnic group in Bradford, UK 1974–199. Eur J Cancer 2003;39:92–7.
- Reutfors J, Kramárová E, Weiderpass E, et al. Central nervous system tumours in children in Costa Rica, 1981–96. Paediatr Perinat Epidemiol 2002;16:219–25.
- Martos MC, Olsen JH. Childhood cancer mortality in the European Community, 1950–1989. Eur J Cancer 1993;29A:1783–9.
- Ries LAG, Eisner MP, Kosary CL, et al. SEER cancer statistics review, 1973–1998. Bethesda: MD, National Cancer Institute; 2001.
- 7. Magnani C, Aareleid T, Viscomi S, Pastore G, Berrino Fthe EUROCARE Working Group. Variations in survival of children with central nervous system (CNS) malignancies diagnosed in Europe between 1978 and 1992: the EUROCARE study. Eur J Cancer 2001;37:711–21.
- Ajiki W, Tsukuma H, Oshima A. Survival rates of childhood cancer patients in Osaka, Japan. Jpn J Clin Oncol 2004;34:50–4.
- Anderson DM, Rennie KM, Neglia JP, Robison LR, Gurney JG. Medical and neurocognitive late effects among survivors of childhood central nervous system tumors. Cancer 2001;92:2709–19.
- Scott JN, Rewcastle NB, Brasher PM, et al. Long-term glioblastoma multiforme survivors: a population-based study. Can J Neurol Sci 1998;25:197–201.
- Strother D, Pollack IF, Fisher PG, et al. Tumors of the central nervous system. In: Pizzo PA, Poplack DG, editors. Principles and practice of pediatric oncology. Philadelphia: Lippincott; 2002. p. 751–824.
- Steliarova-Foucher E, Stiller C, Kaatsch P, et al. Geographical patterns and time trends of cancer incidence and survival among children and adolescents in Europe since 1970s: the ACCIS project. Lancet 2004;364:2097–105.
- Kramárová E, Stiller CA, Ferlay J, et al. International classification of childhood cancer 1996. IARC technical report no. 29. Lyon: International Agency for Research of Cancer; 1996.
- 14. Giles FH, Sobel EL, Leviton A, Tavaré CJ, Hedley-Whyte ET. Childhood Brain Tumor Consortium. Histologic feature reliability in childhood neural tumours. J Neuropathol Exp Neurol 1994;53:559–71.
- WHO. International classification of diseases for oncology (ICD-0). Geneva: World Health Organisation; 1976.
- Fritz A, Percy C, Jack A, et al., editors. International classification of diseases for oncology. Geneva: WHO; 2000.

- Tyczynski JE, Demarèt E, Parkin DM. Standards and guidelines for cancer registration in Europe. The ENCR recommendations. Vol. I. Lyon: IARC Technical Publications no. 40; 2003.
- Gurney JG, Wall DA, Jukich PJ, Davis FG. The contribution of nonmalignant tumors to CNS tumor incidence rates among children in the United States. Cancer Causes and Control 1999;10:101-5.
- Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov). SEER'Stat Database: Incidence – SEER 9 Regs Public-Use, Nov 2003 Sub (1973–2001). Bethesda, MD: National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch; released April 2004, based on the November 2003 submission.
- American Cancer Society. Manual of tumor nomenclature and coding (MOTNAC). New York: American Cancer Society; 1951.
- Smith MA, Freidlin B, Ries LAG, Simon R. Trends in reported incidence of primary malignant brain tumors in children in the United States. J Natl Can Inst 1998;90:1269–77.
- Kallio M. The incidence, survival, and prognostic factors of patients with intracranial glioma and meningioma in Finland from 1953 to 1987. Helsinki: Department of Neurology, University of Helsinki: 1993.
- Dreifald AC, Carlberg M, Hardell L. Increasing incidence rates of childhood malignant diseases in Sweden during the period 1960–1998. Eur J Cancer 2004;40:1351–60.
- Kaatsch P, Rickert CH, Külm J, Schüz J, Michaelis J. Population-based epidemiologic data on brain tumors in German children. Cancer 2001;92:3155–64.
- 25. Gurney JG, Smith MA, Bunin GR. CNS and miscellaneous intracranial and intraspinal neoplasms. In: Ries LAG, Smith MA, Gurney JG, et al., editors. Cancer incidence and survival among children and adolescents: United States SEER program 1975–1995. Bethesda, MD: National Cancer Institute, SEER Program, NIH Publication No. 99–4649; 1999, p. 51–63.
- Hjalmars U, Kulldorf M, Wahqvist Y, Lannering B. Increased incidence rates but no space-time clustering of childhood astrocitoma in Sweden, 1973–92. Cancer 1999;85:2077–90.
- McNally RJQ, Kelsey AM, Cairns DP, Taylor GM, Eden OB, Birch JM. Temporal increases in the incidence of childhood solid

- tumours seen in Northwest England (1954–1998) are likely to be real. Cancer 2001:92:1967–76.
- Linet MS, Ries LAG, Smith MA, Tarone RE, Devesa SS. Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the United States. J Natl Can Inst 1999:91:1051–8.
- Kramárova E, Plesko I, Black RJ, Obsttniková A. Improving survival for childhood cancer in Slovakia. Int J Cancer 1996;65:594–600.
- Stiller CA, Bunch KJ. Brain and spinal tumours in children aged under two years: incidence and survival in Britain, 1971– 85. Br J Cancer 1992;18:50–3.
- 31. Pannelli F, Mosciatti P, Felici L, Magnani C, Pacucci C, Pastore G. Survival trends of childhood cancer during the period 1978–1994 in Italy: a first report from the Italian cancer registries. Epidemiol Prev 2001;25(suppl 3):354–8.
- 32. Gatta G, Capocaccia R, Stiller C, et al. Childhood cancer survival trends in Europe: An EUROCARE Working Group Study. *J Clin Oncol* 2005;23:3742–51.
- 33. Stiller CA. Population-based survival rates for childhood cancer in Britain, 1980–91. BMJ 1994;309:1612–6.
- 34. Stiller CA. Centralisation of treatment and survival rates for cancer. Arch Dis Child 1988;63:3–30.
- 35. Selby P, Gillis C, Haward R. Benefits from specialised cancer care. Lancet 1996;348:313–8.
- 36. Terracini B, Coebergh JW, Gatta G, et al. Childhood cancer survival in Europe: an overview. Eur J Cancer 2001;37:810–6.
- 37. Gatta G, Corazziari I, Magnani C, et al. Childhood cancer survival in Europe. Ann Oncol 2003;14(suppl 5):v119–27.
- 38. Mckinney PA, Feltbower RG, Parslow RC, et al. Survival from childhood cancer in Yorkshire, UK: effect of ethnicity and socioeconomic status. *Eur J Cancer* 1999;**13**:1816–23.
- Kühl J, Doz F, Taylor RE. Embryonic tumours. In: Walker DA, Perilongo G, Punt JAG, et al., editors. Brain and spinal tumours of childhood. London: Arnold; 2004. p. 314–30.
- 40. Kulkarni AV, Bouffet E, Drake JM. Ependymal tumours. In: Walker DA, Perilongo G, Punt JAG, et al., editors. Brain and spinal tumours of childhood. London: Arnold; 2004. p. 331–44.
- 41. Navajas A, Fernandez-Teijeiro A. Embryonic tumours of the central nervous system. Clin Transl Oncol 2005;7:219–27.